Home Search Collections Journals About Contact us My IOPscience

Site preference of the M atom in $(Fe_{1-x}M_x)_3Ga$ (M identical to Cr, Mn, Co or Ni)

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1989 J. Phys.: Condens. Matter 1 5115 (http://iopscience.iop.org/0953-8984/1/31/010)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.93 The article was downloaded on 10/05/2010 at 18:32

Please note that terms and conditions apply.

Site preference of the M atom in $(Fe_{1-x}M_x)_3Ga$ (M = Cr, Mn, Co or Ni)

S Ishida[†], S Fujii[†], N Shinmura[†] and S Asano[‡]

[†] Department of Physics, Faculty of Science, Kagoshima University, Kagoshima 890, Japan

‡ Institute of Physics, College of Arts and Sciences, University of Tokyo, Meguroku, Tokyo 153, Japan

Received 14 June 1988, in final form 31 January 1989

Abstract. Energy band calculations were carried out for $(Fe_{1-x}M_x)_3Ga$ with x = 0 or $\frac{1}{12}$ to investigate the site preference of M atoms and the magnetic properties. It is shown that the site preference can be predicted from the total energy and is closely related to the density of states of two kinds of Fe in Fe₃Ga. Furthermore it is found that the magnetic moment on Cr or Mn in Fe₃Ga is antiparallel and on Co or Ni is parallel to the moment of Fe.

1. Introduction

There have been several experimental and theoretical investigations on Fe₃D ($D \equiv Al$, Si) with a D0₃ crystal structure. The D0₃ Fe₃D has two non-equivalent sites for Fe atoms. One, denoted by Fe_I, is surrounded by eight Fe atoms in an octahedral configuration and the other, denoted by Fe_{II}, is surrounded by four D atoms and four Fe atoms in a tetrahedral configuration.

Recently the structural and magnetic properties of $(Fe_{1-x}M_x)_3Ga$ ($M \equiv Cr$, Mn, Co or Ni) have been investigated by Kawamiya and Adachi (1983). They determined the structural and magnetic phase diagram of $(Fe_{1-x}M_x)_3Ga$ and showed that these systems form a D0₃ crystal structure over a wide x region, although Fe₃Ga forms an L1₂ crystal structure. Furthermore they found the preferential site occupation of the M atom in those systems; that is, Ni and Co enter the Fe_{II} sites, while Cr and Mn enter the Fe_I sites. The same site preference was found for transition-metal impurities in Fe₃Si (Burch *et al* 1981). Swintendick (1976) discussed the site preference of transition-metal impurities in Fe₃Si, making use of a rigid-level model based on his energy band calculation for paramagnetic Fe₃Si. Garba and Jacobs (1986) calculated electronic structures of Fe₃Si with various substitutional impurities on various sites from a tight-binding model. However, there is no self-consistent calculation of the energy band not only for impure Fe₃Si but also for pure or impure Fe₃Ga.

In this paper, we calculate the electronic structures not of only D0₃ Fe₃Ga but also of the systems $(Fe_{1-x}M_x)_3Ga$ (M = Cr, Mn, Co or Ni) by the LMTO method and examine the magnetic properties and the relation between the electronic structures and the site preference of M atoms. For each system $(Fe_{1-x}M_x)_3Ga$ at a given x, we consider two

bilder 5.6 Lattice constant (Å)

Figure 1. The primitive unit cell of Fe_3Ga : (a) indicates Ga; (b), Fe_1 ; (c), Fe_1 .

Figure 2. Total energies of paramagnetic Fe_3Ga for various lattice constants.

cases: M substitution into the Fe_I site and M substitution into the Fe_{II} site. Comparing the total energies of the two cases, we show which of two sites the M atom prefers.

2. Crystal structure and method

The crystal structure of $D0_3$ Fe₃Ga is shown in figure 1, which has a space group O_h^5 ($F_{m\bar{3}m}$). There are 16 atoms in the primitive unit cell: four Ga atoms in 4a sites, four Fe_I atoms in 4b sites and eight Fe_{II} atoms in 8c sites. For the systems (Fe_{1-x}M_x)₃Ga, we consider the case for $x = \frac{1}{12}$; that is, one M atom is substituted for one Fe atom in four molecules of Fe₃Ga. When the M atom occupies one Fe₁ site, the structure has a space group O_h^5 ($P_{m\bar{3}m}$) and the atomic configuration in the primitive unit cell is as follows; one M in 1b, one Ga in 1a, three Ga in 3c, three Fe_I in 3d and eight Fe_{II} in 8g. The positional parameter of the 8g site is $\frac{1}{2}$. On the contrary, when the M atom occupies one Fe_{II} site, the structure has a space group T_d^1 (P_{43m}) and the configuration is as follows: one M in 1b, one Fe_{II} in 1a, three Fe_{II} in 3c, three Fe_{II} in 3d, four Ga in 4e and four Fe_I in 4e. The positional parameters of the 4e site are $\frac{3}{2}$ for Ga and $\frac{1}{2}$ for Fe_I. Local atomic configurations in (Fe_{1-x}M_x)₃Ga are listed in table 1.

Band calculations were carried out self-consistently by the LMTO method (Andersen et al 1985). The exchange-correlation potentials were treated within the framework of the local-spin-density (LSD) approximation (Moruzzi et al 1978). Crystal potentials were assumed to be spherical in the Wigner-Seitz (ws) sphere (ws radii are the same for all constituent atoms). The maximum angular momenta l_{max} describing the wavefunctions were chosen as $l_{max} = 2$ for all atoms. The self-consistency was achieved at 85 or 19 k-points in the irreducible Brillouin zone for paramagnetic or ferromagnetic D0₃Fe₃Ga. For (Fe_{1-x}M_x)₃Ga, it was achieved at 20 k-points for M = Co or Ni and at 35 k-points for for M = Ni or Cr because the convergence against k-points is worse for the latter than for the former. The self-consistent iterations were carried out for both core and valence states. The density of states (DOS) was obtained by the tetrahedral integration method (Rath and Freeman 1975).

Table 1. Local atomic configurations in $(Fe_{1-x}M_x)_3Ga$ at $x = \frac{1}{12}$. The figures in parentheses show positions of atoms in the unit cell and those before elements show numbers of neighbouring atoms.

M atom in Fe _I sites	1st neighbours	2nd neighbours		
M	8Fe _{II}	6Ga(3c)		
Fe ₁ Fe ₁₁	8Fe _{II} 1M, 1Ga(1a), 3Ga(3c), 3Fe _I	2Ga(1a), 4Ga(3c) 6Fe ₁		
M atom in Fe _{II} sites	1st neighbours	2nd neighbours		
M	4Ga, 4Fe _I	6Fe _u (3c)		
Fe ₁	$1M, 1Fe_{II}(1a), 3Fe_{II}(3c), 3Fe_{II}(3d)$	6Ga		
Fe _{II} (1a)	4Ga, 4Fe ₁	$6Fe_{II}(3d)$		
$Fe_{II}(3c)$	4Ga, 4Fe ₁	$2M, 4Fe_{II}(3d)$		
$Fe_{II}(3d)$ 4Ga, 4Fe _I		$2Fe_{II}(1a), 4Fe_{II}(3c)$		

For the systems $(Fe_{1-x}M_x)_3Ga$ ($M \equiv Cr$ or Mn), we assumed at first in the selfconsistent iteration that the magnetic moments of Cr and Mn are antiparallel to those of Fe atoms, because the measured values of the saturation magnetic moment of the systems are smaller than those estimated from a simple dilution (Kawamiya and Adachi 1983). The initial values of magnetic moments are as follows: $-1.5 \mu_B$, $-1.0 \mu_B$, $2.5 \mu_B$, $1.8 \mu_B$, $0.5 \mu_B$, $0.4 \mu_B$ and 0 for Cr, Mn, Fe₁, Fe₁₁, Co, Ni and Ga, respectively.

3. Results and discussions

First we calculated the total energy of paramagnetic $D0_3$ Fe₃Ga for various lattice constants and obtained the result that the total energy possesses a minimum for the value of 5.743 Å (figure 2). This value is a little smaller than the experimental value (Kawamiya *et al* 1972). However, we used the value of 5.743 Å for the lattice constants of ferromagnetic $D0_3$ Fe₃Ga and the systems (Fe_{1-x}M_x)₃Ga (M = Cr, Mn, Co or Ni).

The DOS curves of iron d bands for paramagnetic Fe_3Ga are shown in figure 3. As could be guessed from the atomic configuration, the DOS of Fe_I is similar to that of pure iron d bands and has a two-peak structure which is characteristic of BCC Fe. Between these peaks, there exists a deep valley. The DOS of Fe_{II} has a more complex structure than that of Fe_I and peaks at the deep valley of the DOS of Fe_I . Since the peak of Fe_I is higher than that of Fe_{II} near the Fermi level, it is expected that the magnetic moment of Fe_I is larger than that of Fe_{II} in a ferromagnetic state.

The DOS curves of iron d bands in ferromagnetic Fe₃Ga are shown in figure 4. It is seen that up-spin states are almost occupied in both Fe_I and Fe_{II} and that the down-spin states are unoccupied much more for Fe_I than for Fe_{II}. The calculated values of the magnetic moment are $-0.10 \mu_B$, 2.38 μ_B and 2.09 μ_B for Ga, Fe_I and Fe_{II}, respectively. The experimental values obtained by neutron diffraction are (2.2–2.5 μ_B) for Fe_I and less than 1.7 μ_B for Fe_{II} (Kawamiya and Adachi 1982). The calculated value for Fe_{II} is somewhat larger than the experimental value.

Figure 3. The DOS curves of iron d bands in paramagnetic Fe_3Ga . The solid and broken curves show the DOS of Fe_1 and Fe_{11} respectively. The Fermi level is indicated by the vertical dotted line.

Figure 4. The DOS curves of iron d bands in Ferromagnetic Fe₃Ga. The solid and broken curves show the DOS of Fe₁ and Fe₁₁ respectively. The DOS curves for up-spin electrons are shown on the left and those for down-spin on the right. The Fermi level is indicated by the horizontal dotted line.

The numbers of electrons in ws spheres are listed in table 2 for constituent atoms of Fe_3Ga . The difference between the number of electrons of an atom in Fe_3Ga and that of the free atom are also given, together with the numbers of electrons for each angular momentum. From this table, we notice that electrons transfer from Ga atoms to Fe atoms and that the number n_t of transferred electrons is larger for Fe_{II} than for Fe_{I} ; in other words, Fe_I and Fe_{II} are electronegative and Fe_{II} is more electronegative than Fe_I .

Table 2. Numbers of valence electrons with angular momentum l in the ws sphere and numbers of transferred electrons n_i .

		s	р	d	Sum	nt
Fe ₁	Major Minor	0.311 0.329	0.379 0.428	4.539 2.097	5.230 2.854	0.084
Fe _{II}	Major Minor	0.291 0.292	0.387 0.429	4.427 2.290	5.105 3.012	0.117
Ga	Major Minor	0.528 0.537	0.710 0.814	5.052 5.041	6.290 6.393	-0.317

Thus, it may be said that an element electronegative to Fe prefers Fe_{II} sites, as indicated by Swintendick (1976) for Fe_{I} and Fe_{II} sites in $Fe_{3}Si$.

For $(Fe_{1-x}M_x)_3$ Ga at $x = \frac{1}{12}$ (M = Cr, Mn, Co or Ni), as already mentioned, we consider two cases: type I, M substitution into the Fe₁ site; type II, M substitution into Fe_{II} . Figure 5 shows the partial DOS curves of M and Fe atoms for type I and figure 6 shows those for type II. Although there are three different sites for Fe_{II} atoms in the unit cell of the type II, we show only the DOS of Fe_{II} in 3d sites because the DOSS of Fe_{II} in different sites are quite similar to each other. From the figures, we note that the DOS of Fe_1 (Fe₁₁) in (Fe_{1-x}M_x)₃Ga has the structure of the DOS of Fe₁ (Fe₁₁) in Fe₃Ga. For both types, the band width of M atoms becomes narrow and the DOS shifts to an increasingly lower energy in the order Cr, Mn, Co, Ni, since the potential around M atoms becomes increasingly deeper in that order. Paying attention to the DOS of M atoms in figure 5, we note that the DOS has the same two-peak structure as Fe₁ although the peak in the lowerenergy region is low for up-spin states of Cr and Mn and the detailed structure of the main peaks is changed from that of Fe₁ owing to the hybridisation between d bands of M and Fe atoms. On the contrary, the DOS of M atoms of type II in figure 6 is similar to that of Fe_{II} except for that of Cr and Mn for up-spin states. From these figures, we can also see that the up-spin bands are more occupied than the down-spin bands for Fe₁, Fe_{II} , Co and Ni in both types, but the down-spin bands are more occupied for Cr and Mn. That is, the magnetic moments on Cr and Mn are antiparallel to those of Fe, while those of Co and Ni are parallel.

The calculated magnetic moments on the constituent atoms in $(Fe_{1-x}M_x)_3Ga$ are given in table 3, together with saturation moments per formula unit (Kawamiya and Adachi 1983). We note that the moments on Fe do not differ much from those on the corresponding Fe in Fe₃Ga except for Fe_{II} in type I, where the moment on Fe_{II} is almost equal to that on Fe_{II} in Fe₃Ga for the case of $M \equiv Co$ or Ni but is about 0.5 μ_B smaller for $M \equiv Cr$ or Mn. This is considered to be due to the difference of neighbours; as seen in table 1, Fe_{II} has one M atom in the first neighbours for type I but does not for type II. Paying attention to the DOS of Fe_{II} in type I, it is found that the unoccupied DOS of the up-spin states is larger for $M \equiv Cr$ or Mn than for $M \equiv Co$ or Ni since above the Fermi level the hybridisation between the d bands of M and Fe_{II} is stronger for $M \equiv Cr$ or Mn. This causes a decrease in the magnetic moment on Fe_{II} for $M \equiv Cr$ or Mn. Experimental results (Kawamiya and Adachi 1983) show that the saturation magnetic moment of the real system for $M \equiv Cr$ or Mn is smaller than that estimated from a simple dilution. The moment reduction is attributable to the moment decrease of Fe_{II} and to antiparallel moments on Cr or Mn.

Figure 5. The DOS curves of d bands of constituent atoms in $(Fe_{1-x}M_x)_3Ga$ for the case of type I: (a) M = Cr; (b) M = Mn; (c) M = Co; and (d) M = Ni. For each part, the DOS of M and Fe₁ are shown on top with those of M and Fe₁₁ below. In each figure, the solid and broken curves show the DOS of M and Fe atoms respectively and the DOS curves for up-spin electrons are shown on the left, and those for down-spin on the right.

Figure 6. The DOS curves of d bands of constituent atoms in $(Fe_{1-x}M_x)_3Ga$ for the case of type II: (a) M = Cr, (b) M = Mn, (c) M = Co and (d) M = Ni. For each part, the DOS of M and Fe₁ are shown on top, with those of M and Fe₁ below. In each figure, the solid and broken curves show the DOS of M and Fe atoms respectively and the DOS curves for up-spin electrons are shown on the left and those for down-spin on the right.

Мn

Co

Ni

-1.71

0.68

0.40

-0.07

-0.09

-0.09

	Type I (M in Fe ₁ sites)							
	M(1b)	Ga(1a)	Ga(3c)	$Fe_1(3d)$	Fe _{II} (8d)	FU	Exp.	
Cr	-1.17	-0.10	-0.07	2.51	1.53	4.58	4.93	
Mn	-2.98	-0.12	-0.08	2.49	1.63	4.29	5.00	
Со	1.64	-0.10	-0.09	2.44	1.97	6.09		
Ni	0.41	-0.10	-0.10	2.42	2.01	5.83		
			Type II	(M in Fe _{II} s	sites)			
	M(1b)	Ga(4e)	Fe _I (4e)	Fe _{II} (1a)	$Fe_{II}(3c)$	Fe _{II} (3d)	FU	Exp.
Cr	-2.02	-0.07	2.32	2.21	1.90	2.03	5.24	

2.04

1.99

2.12

1.86

1.87

2.07

2.01

2.00

2.14

5.29

5.98

6.20

5.65

5.55

Table 3. Magnetic moments of atoms in $(Fe_{1-x}M_x)_3Ga$ (M=Cr, Mn, Co and Ni). The unit is μ_B . The sites of atoms are given in parentheses.

The differences between the total energies of type I and type II are 0.012 Ryd FU^{-1} , -0.004 Ryd FU^{-1} , -0.034 Ryd FU^{-1} and -0.053 Ryd FU^{-1} for $M \equiv Cr$, Mn, Co and Ni, respectively. These results indicate that Cr impurities energetically prefer Fe₁ sites, while Mn, Co and Ni impurities prefer Fe₁ sites. However, we cannot predict with certainty the site preference of Mn considering the accuracy of our calculation because the difference between total energies is very small. Apart from Mn, our results are consistent with the experimental results. Next we consider the relationship between the site preference and the DOS obtained.

2.37

2.50

2.51

We consider only the contribution of d electrons of M atoms to the total energy which may be most important to discuss the site preference. Comparing the Dos of Cr in figure 5(a) with that in figure 6(a), we note that the DOS in the lower-energy region is higher in figure 5(a) than in figure 6(a). Therefore the d electrons of Cr favour the d bands of type I rather than those of type II. For Mn, the same situation is seen on comparing the DOS of Mn in figure 5(b) with that in figure 6(b). On the contrary, for Ni there are peaks in figure 6(d) between the two main peaks in figure 5(d). The d electrons of Ni favour the d bands of type II owing to the central peaks since these peaks supplement the energy loss due to the low DOS in the lower-energy region with the energy gain due to the DOS in the higher-energy region. For Co, the same situation is seen but the effect of the central peaks is weaker since the DOS of the central peaks are smaller than those for Ni.

These features, as described above, are roughly explained as follows on the basis of the rigid-band model using the DOS of Fe_I and Fe_{II} in Fe_3Ga . When the number of d electrons of M atoms such as Cr is low, the d electrons tend to occupy the d bands of Fe_I rather than those of Fe_{II} because of the high DOS in the lower-energy region. On the contrary, when the number of d electrons of M atoms such as Ni is high, the d electrons tend to occupy the d bands of Fe_{II} because of the high DOS in the contral-energy region of the d bands. That is, M atoms prefer the Fe_I sites when the number of d electrons is low but the Fe_{II} sites when the number is high. This conjecture is consistent with our results of the total energy of the systems. Thus the difference between the DOSs of Fe_I

and Fe_{II} in Fe_3Ga is an important factor to consider in the site preference of M atoms in $(Fe_{1-x}M_x)_3Ga$.

We performed another calculation for type I of the case $M \equiv Cr$ using the same initial condition except that the initial moment on Cr is parallel to that on Fe. The total energy of this case is a little higher than the case of the anti-parallel moment on Cr. The moments obtained do not differ much from those given in table 3 except for Cr and Fe_{II} ($-0.56 \mu_B$ for Cr and $1.64 \mu_B$ for Fe_{II}). Although we assumed that the initial moment on Cr was parallel to that on Fe, the moment on Cr obtained finally in the self-consistent iteration is anti-parallel to that on Fe. Thus we can guess that the antiferromagnetic coupling between the moments of Cr and Fe is very strong. However, we cannot explain only from our calculations why Cr and Mn couple antiferromagnetically to the surrounding Fe.

As described above, we have considered two types of ordered alloy in order to investigate the site preference of M atoms in $(Fe_{1-x}M_x)_3Ga$: they have M atoms substituted for Fe_I or Fe_{II} , respectively. We obtained the correct site preference of M atoms in the systems $(Fe_{1-x}M_x)_3Ga$ ($M \equiv Cr$, Mn, Co or Ni) except for Mn from total-energy differences and showed that our conjecture about the relationship between the site preference and the difference between the DOSs of Fe_I and Fe_{II} in Fe_3Ga is not inconsistent with the experimental results. Furthermore we obtained the result that the moment reduction in the real system ($M \equiv Cr$ or Mn) is attributable to the moment decrease of Fe_{II} atoms and to the antiparallel moments of Cr and Mn atoms. We have considered only the M concentration x of $\frac{1}{12}$; therefore, our calculation is not extensive enough to discuss the site preference for the whole composition range. However, our results must be helpful in discussing the site preference and magnetic properties for alloys of the type Fe_3D ($D \equiv Al$, Si, etc).

Acknowledgments

We would like to thank Professor K Adachi of Nagoya University and Professor N Kawamiya of Chukyo University for providing us with information. This work was partially supported by the Grant-in-Aid for Scientific Research from the Ministry of Education of Japan. The numerical calculations were performed on a FACOM M-780 at the Computer Center of Kyushu University and a HITAC M-280H at the Computer Center of the University of Tokyo.

References

- Andersen O K, Jepsen O and Glotzel D 1985 Proc. Int. School of Physics 'Enrico Fermi', Course 89 59 Burgh T L Burdeich L L Nimbergy V A, Bri K and Literate T 1091 Phys. B 24 2866
- Burch T J, Budnick J I, Niculescu V A, Raj K and Litrenta T 1981 Phys. Rev. B 24 3866
- Garba E J D and Jacobs R L 1986 J. Phys. F: Met. Phys. 16 1485
- Kawamiya N and Adachi K 1982 Trans. Japan Inst. Metall. 23 296
- 1983 J. Magn. Magn. Mater. 31–4 145
- Kawamiya N, Adachi K and Nakamura Y 1972 J. Phys. Soc. Japan 33 1318
- Moruzzi V L, Janak J F and Williams A R 1978 Calculated Electronic Properties of Metals (New York: Pergamon)
- Rath J and Freeman A J 1975 Phys. Rev. B 11 2109
- Swintendick A C 1976 Solid State Commun. 19 511